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‘B. APPENDIX ON FIBRE BUNDLES

In this appendix, I:give concise definitions of those concepts
from the Eheory of fibre bundles which are necessary to Ehg anélogy
between metric;connection theories of gravity and gauge theories of
elementary pﬁrticle interactions. .In this brief account, no mention
is made- of cbntinuify and differentiability. A1l spaces and maps are
assumed to be asrcontinuous and differentiaﬁle as necessary. For more
details on the theory of fibre bundles, I refer Fhe readef-to the
standard texts bQ'Steenrod {1951 ] and by Kobayashi and Nomizu

[1963 , 1969 ] and to my owm lecture notes [1979 ].

A fibre bundle is a topological space, B, which consists of a copy,

?P, of a space, F, called thg typical fibre, at each point, p, of a

base s ace; M. As a set, the bundle épace is the union

= |] F , o (1)
peM P

and there is a bundle projection,

T:B*+*M: ¢ »p, if ¢y e FP. , ©{2)

The fibre over p is just Fp = ﬁfl(p). The bundle space must have a

topology which makes the fibre bundle locally trivial. This means that
each point, peM, has a neighborhood, U <=M, for which there is.a

homeomorphism,

ho: ﬁ-l(U) > U % F, ' (3)

which preserves fibres; i.e. %, ¢ h = 7w, where =,

1 t UXF ~»TU is the

1!

. projection on the first argument. Such a pair, (U,h), is called a

triviality chart; U is the triviality patch and h is the triviality

w22. An atlas is a set of charts, {(Ua;ha)}, whose patches cover the
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‘base space; i.e.
SURIED AR : 4)
o . .

A local cross section, ¥, of a fibre bundle, B, defined over a

subset, U = M; is a function, ¢ : U > B, such that ¥ ¢ § = idU.
Thus, to each point, p E-U, P aséigns a point, ¥(p), in the fibre over
p. It is global if it is defined over 2ll of M; i.e, ¥ ¢: M + B,

The ﬁap

-, oh : onip) > F, (5)
2 el g :
T {p)
(where Ty U X F - F is the projection on the second argument) is a
homeomorphism from the fibre over p to the typicalﬁfibre. If
o o o

Uoe ﬂ-l(p), we sometimes write ¥ for hép(¢) and say that ¢ is the

descfiption of ¢ in the g-trivialization. The continuous function,

haB s Ua M UB +'Homeo(F,F), {6)
defined by

h () =h shl :F-F, . 7

af op Bp

relates the description of ¢ in the a-trivialization to its description

in the 3-trivialization:

-1 B

o B
V=R o R ¥ = b )y : (®)

Eence th ig called the transition funetion from the B-trivialization

to the a-trivialization, and the homeomorphisﬁ, haB(p)’ is called the

zction of the transition function.

Now suppose there is a left action, &, of a Lie group, G, on the

typiczl fibre, F. A G-bundle is a fibre bundle, B, together with an
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atlas, {(Ua’ha)} » and a set of functions,

gaB : UOL N UB »> G, (9)

called overlap gauge transformations, such that for all p ¢ UOL N UB’

the action of the transition functionm, haB(P)’ coincides with the

left action of the overlap gauge transformation,

N
= haB(P) = ha ¢ h : F~+F, (10)

2
P Bp

gas(p)

and such that for all p ¢ Uu N UB N UY' the overlap gauge transformations

satisfy the cocyele condition,

8, () ng(P) = 8y, @) (11)

where the product on the left is the group product. The group, G, is

called the structure group or the gauge group. 'The pair (Ua’ha) is

now called a gauge chart; Ua is the gaugg patch and ha is the gauge
map .

A G-vector bundle is a G—bﬁndle, E, in which the typical fibre is

a vector space, V, and the left action is a representation, R, in that

it is linear. A principal G-bundle is.a G=bundle, P, in which the

typical fibre is the group, G, itself, and the left action, L, is
left multiplication in the group,
Lo 8y = 8 8- (12)
1
Two G-bundles are called associated if they have the same base space, M,

the same gauge group, G, the same gauge patches, {Ua}’ and most important,

the same overlap gauge transformations, {g _}.
afl
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There are many ways to dgfine a connection on a G-bundle. I
only give‘two of them. They are not the most geometric nor the most
illuminating; ;ather‘they are the -ones most useful in particle physies
and rélativity. |

The first definition is only appropfiate when G isré matrii group,

although it applies to-any G-bundle, B, with patches, {Uu}’ and overlap

gauge transformations, {g ,}. A base connection l-form, A, on a
af , L

: - a .
G-bundle, B, is a Lie algebra valued 1-form, s, on each patch, Ua’
o . .
Az TU + LG, ) (13)

LG is the Lie algebra of G.) such that on each overlap, Uu N UB’

the 1-forms are related by

A=g,0 A8+ 8By a8 (14)

where d takes the differential of each matrix element and all products
o

are matrix multiplication. The 1-form, A, is called the connection

l—form inthe a-gauge.

(If G were mot a matrix group, the definition would still hold

except that equation (14) would have to be generalized. See Kobayashi

and Nomizu [1963] pp. 65-66.)

Notice that a connection on one G-bundle is also a connection on
all of its associated G-bundles.

The connection l-form can be expanded in a coordinate basis, dxa,

for the l-forms and a dimensionless basis, T for the Lie algebra, £G:

P’

Q (].P a '
A=A a TP dx . (15)
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. 41 .
P . . .
The components, A a’ are. called the connection coefficients in the

a-gauge Or more physically, the gauge potentials in the c-gauge.

Kow consider a G-vector bundle, E, with typical fibre, V, re-

. presentation, R, and overlap gauge transformations, gaB’ which has a

base conmection 1-form, A. Under a gauge transformation, the components

of a cross section, ¥, transform according to

k k B-

. _
4= Rey) g Vo (16)

Hence, the directional derivative of the components in the direction,

a . - ' g .
X=X Ba, transform according to

B B.

. _
a k k _a j a- k. ]
3 X aaw + [X 83(Rga8) j“’, . (17)

X Balb = (RguB)

s
. a k .
The non-covariant second term prevents X Baw from being the components

- of a new cross section. On the other hand, the combination,

“ a, Sk, %P k%
Tt = X A RT)T, 6, | (18)

called the covariant derivative of  in the direction, X, is a cross

section because it transforms covariantly:

o kB3 .
wa = (Rgaﬁ) 5 wa . (19)

This brings us to the second definition of a connection, in the
form of a covariant derivative on a vector bundle. For the time being,
ignore the definition (18) and let E be an arbitrary vector bundle

(without a connection l1-form). A covariant derivative on a vector

‘bundle, E, is a funetion, V, which to each local cross section,

S :+ U ~ E, and local tangent vector field, X : U > TU, assigns a new

local cross section, wa : U+ E, {called the covariant derivative of

the cross section, ¥, in the direction, X,) which is

-
”
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(i) function linear in the differentiating direction,

' v(fX + gY)‘J’ = f‘VXuJ + gl VYIP; . (20)

(ii) additive in the differentiated cross section,
VX(w f X) = VX¢ + VXX 3 : . (21)

and

(iii) Leibnizian in the differentiated cross sectionm,
— a »
VX(fw) = X (aaf)¢ + £ vy (22).

(If E is not a Qector bundle, then there is no definition of a covariant
derivative.)

In the case that E is a G—vectof bundle with representation, R,
equétion (18) defines a covariant derivative, V, in terms of a base
connection 1l-form, A. Conversely, if R is a faithful representation
" of £6 (i.e. the matrices RT

P

recovered from V by reading off the coefficients of RTP in

are linearly independent), then A may be

(v &)k

e k :
REPRED S (23)

where %j is the iocal frame field for the bundle, E, which has the
components, (%j)k = 6? , in the a-gauge. If R is not a faitﬁful re—
pfesentation of LG, then V does not fully determine the base connection
1-form, A. In that cése, A is regarded as the coﬁnection rather than V.

From the connection, one defines the curvature. In terms of the

base comnection 1-form, A, one defines the base curvature 2-form, F,

which in the a-gauge is the £G valued 2-form,

P
ab

b

o] & a
F=F _T,d Adx, - (24)
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whose components (in a coordinate basis) are the gauge fields in the

g-gauge,
a o o o, o
P P P P Q R
F ab aaA b ?bA a + f ® A a A b (25)
"~ where the fPQR are the dimensionless structure constants of LG defined by
[T, T.] = £ . T.. | (26)
Q° R QR P . :

In terms of the covariant derivative, V, one defines the curvature

operator, F, by the formula,

FE, V¢ = V Vb ~ V.V 0 - V[X,Y}IP’ (27)

and finds that in the oc~gauge .

a o
P = X Y -‘?ab (RTP)kJ. v, (28)

LA
where FPab is again given by (25). Under a gauge transformation the

curvature transforms covariantly accoxrding to

o B : .
-1 ,
F=gp T Bug > ' (29)
or
o B
P _ P Q .
¥ ab - ad (gaB) Q F ab’ (30)

where ad denotes the adjoint representation of G. Hence, the curvature
may be regarded as a global cross section of the associated G-vector
bundle whose typical fibre is the tensor product of the spacetime 2-forms

and the Lie algebra of G transforming under the adjoint representation.




